Prepared By:

Town Of Georgina

Criticality Analysis

GMBP File: 714077-2

September 1st, 2016

GUELPH | OWEN SOUND | LISTOWEL | KITCHENER | EXETER | HAMILTON | GTA 650 WOODLAWN RD. W., BLOCK C, UNIT 2, GUELPH ON N1K 1B8 P: 519-824-8150 WWW.GMBLUEPLAN.CA

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.1	Project Scope	1
	1.2	Report Scope	1
	1.3	Existing Data	1
2.	SYS	STEM OVERVIEW	2
	2.1	Water System	2
	2.2	Wastewater System	
3.	ASS	SET REPLACEMENT PROGRAM SCENARIOS – OVERVIEW AND METHODOLOGY	3
	3.1	Average Asset Replacement Value – All Assets	
	3.2	Age Based Replacement Program – 20 Years	
	3.3	Risk Based Replacement Program	
	3.3.		
	3.3.		
4.		ERAGE ASSET REPLACEMENT PROGRAM – ALL ASSETS	
5.		E BASED REPLACEMENT PROGRAM – 20 YEAR	
6.		K BASED REPLACEMENT PROGRAM	
	6.1	Scenarios	
	6.1.	5	
	6.1.		
	6.1.		
	6.2	Watermain Risk Based Program	
	6.2.		
	6.2.		
	6.2.		
	6.3	Wastewater Risk Based Program	
	6.3.	5 5	
	6.3.		
	6.3.		
7.		ENARIO SUMMARIES	
8.		MMARY	
	8.1	Recommendations	17

APPENDICES

APPENDIX A: CRITICALITY ANALYSIS TOOL INSTRUCTIONS

1. Introduction

The Town of Georgina has retained GM BluePlan Engineering Limited to develop a prioritized capital program budget estimate through the criticality analysis and risk assessment of the Town's water distribution and sanitary sewer system assets. The primary objective of the assignment was to develop an Excel based analytical tool that can be used in risk-based decision making for a prioritized capital program. A series of asset replacement program scenarios were developed with differing risk thresholds to understand the impacts of increasing, maintaining, or decreasing capital expenditure.

1.1 Project Scope

In consultation with the Town of Georgina, the tool and capital program were developed to achieve the following objectives:

- Development of a dynamic Excel-based tool with transparent analysis
- Development of a risk score for each asset based on likelihood of failure and consequence of failure. As part of the development of a risk score, the tool will:
 - o Identify water and wastewater system priority components
 - o Identify costs and timings associated with the replacement of individual or system wide assets
- Development of asset replacement program scenarios with varying degrees of associated risk and expenditure

1.2 Report Scope

The scope of this report is to outline the process in which the risk assessment tool and prioritized capital program were developed including:

- Overview of data used to populate the tool's database
- Methodology for developing the tool and capital program scenarios
- Outline of both the risk based and age based replacement programs
- Recommendations for utilizing the tool in future asset management applications

1.3 Existing Data

The following is a list of data received and utilized in risk assessment of both the Town's watermains and sanitary sewers:

- GIS data
 - Town's water distribution system
 - Geometry, age, material, location, and ownership
 - Town's sanitary sewer system
 - Geometry, age, material, ownership, and location of sewage pumping stations
 - Environmental features
 - o Road classes
- All-pipe hydraulic water model
- Historic break information
- Billing and population data
- Historic watermain maintenance issues (e.g. frozen watermains)
- Estimated Service Life (ESL) by material type

2. System Overview

2.1 Water System

The Town of Georgina's water distribution system consists of approximately 206 km of watermains averaging an age of 21 years. Table 1 summarizes the Town's water distribution asset characteristics in terms of remaining life, material, and diameter.

Table 1: Water Distribution System Overview										
Remaining Life (Years)					Materia	al ⁽¹⁾		Diameter (mm)		
0	1%	2,854 m		AC	3%	6,587 m		≤100	1%	2,525 m
5	3%	5,596 m		CI	4%	7,235 m		150	56%	115,727 m
10	3%	5,855 m		CPP	2%	3,872 m		200	15%	30,193 m
20	8%	16,816 m		DI	7%	15,050 m		250	5%	9,333 m
40	16%	33,153 m		PVC	82%	169,728 m		300	11%	23,142 m
60	55%	113,213 m		Other	2%	3,260 m		≥350	12%	24,811 m
Total I	ength	205,732 m		Total L	.ength	205,732 m		Total I	ength	205,732 m

(1) For unabbreviated material types refer to Table 3

2.2 Wastewater System

The Town of Georgina's water distribution system consists of approximately 175 km of gravity sewers averaging an age of 22 years. Table 2 summarizes the Town's sanitary gravity sewer characteristics in terms of remaining life, material, and diameter.

	Table 2: Sanitary Sewer System Overview (Gravity Sewers Only)										
Rei	Remaining Life (Years)			Material ⁽¹⁾				Diameter (mm)			
0	<1%	459 m		AC	7%	11,846 m		≤150	<1%	111 m	
20	<1%	549 m		СР	4%	6,162 m		200	76%	132,463 m	
40	7%	11,527 m		PVC	89%	155,958 m		250	11%	19,647 m	
60	19%	33,719 m		Other	<1%	603 m		300	3%	5,582 m	
80	90%	156,695						≥350	10%	16,766 m	
Total	Length	174,570 m		Total L	ength	174,570 m		Total Length		174,570 m	

(1) For unabbreviated material types refer to Table 3

3. Asset Replacement Program Scenarios – Overview and Methodology

A number of asset replacement programs were developed to further understand the impacts of aging assets and their associated risks while emphasizing sustainable capital expenditure. The foundation for the capital replacement program relies on the total replacement cost for each asset which was based on an assumed unit cost per metre of pipe plus 25% to account for associated engineering and contingency allowances.

The timing schedule for asset replacement was influenced by the estimated useful life for each material type. Table 3 summarizes the unit costs by diameter and estimated useful life by material for both watermains and sewers.

This section outlines the three methodologies for the different asset replacement approaches:

- 1. Average Asset Replacement Value All Assets
- 2. Age Based Replacement Program 20 Year Average
- 3. Risk Based Replacement Program 20 Year Program

The results and summary of the three methodologies are shown in Sections 4 through 6.

A summary of the Excel based tool's dynamic features is located in Appendix A.

Diameter	Unit Costs (\$/m)			Matarial		Estimated Service Life (Years)		
(mm)	Watermains	Sewers		Material	Watermains	Sewers		
≤150	500	500		Asbestos Cement	AC	75	75	
200	600	500		Cast Iron	CI	50	60	
250	600	500		Clay Pipe	СР	-	90	
300	750	618		Concrete Pressure Pipe	CPP	75	-	
350	800	-		Copper	COP	50	-	
375	-	659		Corrugated Steel	CSP	-	25	
400	900	-		Ductile Iron	DI	50	60	
450	970	715		High Density Polyethylene	HDPE	75	75	
500	1,100	-		Poly Vinyl	PV	75	-	
525	-	769		Polyethylene	PE	75	-	
600	1,300	990		Polyvinyl Chloride	PVC	75	90	
675	-	1,200		Steel	STL	60	-	
750	1,550	1,331		Unknown	UNK	50	60	
825	-	1,428						
900	-	1,680						

Table 3: Unit Cost by Diameter and Estimated Useful Life by Material

3.1 Average Asset Replacement Value – All Assets

The Average Asset Replacement Value represents the long term average annual costs to replace every asset in the system. This program was based on the cumulative asset replacement costs and the maximum period of time to replace every asset in the system. This methodology provides a general, long term average replacement need of the entire system based on the estimated service life of each asset.

Average Annual Cost for Replacement = Total Replacement Cost ÷ Year for Full Replacement

3.2 Age Based Replacement Program – 20 Years

The Age Based Replacement Program was based on the current age and estimated service life of each asset.

Replace Asset When \rightarrow Asset Age = Estimated Service Life

The replacement timing schedule was based on estimated useful life by material types listed in Table 3. The Age (ESL) Based Replacement Program estimates the asset replacement needs for the following timeframes:

- 1-5 Years
- 6-10 Years
- 11-20 Years
- 20+ Years

The critical value derived from this calculation is the average replacement needs over the next 20 years. This methodology provides an indication of the average annual asset replacement needs over the next 20 years based on the current age of the network.

3.3 Risk Based Replacement Program

The development of a Risk Based Replacement Program is the focus of the study. This program incorporated specific asset variables and parameters in order assign a criticality score to each pipe. This criticality score drives the immediate and long term replacement program.

A risk score was assigned to each asset based on a number of weighted criteria which govern its Likelihood of Failure (LOF) and Consequence of Failure (CoF) scoring. The higher weightings were assigned to each criteria with greater importance or consequences. A pairwise analysis was used to develop a weighted relationship between two or more relevant factors and was applied to failure indicators, consequence criteria, and consequence categories.

The resulting scores are governed by the importance of each potential impact relative to other impacts. With the determination of the likelihood of failure and consequence of failure scoring, risk was calculated by the following formula:

Risk: Likelihood of Failure & Consequence of Failure

The subsequent risk score was used in determining an action and timing schedule for each asset assessed.

TOWN OF GEORGINA CRITICALITY ANALYSIS GMBP FILE: 714077-2 SEPTEMBER 1ST, 2016

3.3.1 Likelihood of Failure

The Likelihood (or Probability) of Failure is the probability in which an asset will fail when considering physical condition, age and reliability. The most accurate means of determining the LoF is using up to date condition information; however, condition information was not available during this study. As such, the LoF was based off a comparison of known asset characteristics which are known indicators for failure. These indicators include the following:

- Watermains:
 - Age, estimated service life, and remaining life
 - Historic breaks
 - o Material
- Sewers:
 - Age, estimated service life, and remaining life

Each of the above criteria were given a 1-5 rating based on the impacts of each factor on the LoF (e.g. a pipe with very little to no estimated remaining life receives an "Age Score" of 5, a new pipe receives an "Age Score" of 1). These ratings were weighted against one another based on relative influence on pipe failure, then added together to obtain a total LoF score between 1 and 5.

3.3.2 Consequence of Failure

The Consequence of Failure is a measure of the impacts of failure of an asset on that particular asset's service area. The CoF for the purposes of this study were divided into two categories:

- Hydraulic level of service (LOS) Impacts System wide impacts to customers
- Property and Environmental Impacts Immediate area impacts to the asset's surrounding environment

The following is a list of customer level of service and property and environmental indicators:

- Watermains:
 - Hydraulic LOS impacts
 - Number of customers that experience a loss of service as determined by the hydraulic model (Total Loss, < 20 psi, <40 psi)
 - Land use; Residential or ICI
 - Property and environmental impacts
 - Flow rate; Discharge into the environment
 - Max day pressures
 - Road class; traffic interruptions
 - Proximity to an environmental feature with emphasis on direct water feature crossings
- Sewers:
 - o LOS impacts
 - Diameter and peak wet weather flow rates are a direct result of the upstream catchment area the sewer is servicing
 - Property and environmental impacts
 - Location of sewer to a sewage pumping station
 - Road class
 - Proximity to an environmental feature with emphasis on direct water feature crossings

Each of the above criteria were given a rating based on the impacts of each factor on the CoF and then weighted using a pairwise analysis. Table 4 outlines the CoF impacts and their corresponding ratings. A second pairwise analysis was performed between LOS impacts and Property and Environmental impacts. The total consequence of failure was determined as the sum of the two weighted categories.

Table 4: Consequence of Failure Categories

1	Rating	Total Customer Impact (Water)	Total Customer Impact (Wastewater)	Property and Environmental Impact
5	Extreme Impact Score >500		Impact Score >500 Diameter >525 (Trunk Sewer) Largest Catchment Area, failure impacts highest number of customers	
4	Major	Impact Score 201-500	>450 Diameter ≤525 (Sub-trunk sewer) Large Catchment Area, failure impacts high number of customers	Major disruption/impact
3	Moderate	Impact Score 51-200	>375 Diameter ≤450 (Sub-trunk sewer) Medium catchment area, failure impacts moderate number of customers	Moderate disruption/impact
2	Minor	Impact Score 2-50	>250 Diameter ≤375 (Local collector sewer) Small catchment area, failure impacts low number of customers	Minor disruption/impact
1	Minimal	Impact Score <1	Diameter ≤250 (Local sewer) Smallest catchment area, failure impacts least number of customers	Trivial disruption/impact

4. Average Asset Replacement Program – All Assets

The Average Asset Replacement Program was based on the average annual costs required to replace all assets over the period of their estimated life. The average annual costs for replacement is outlined in Table 5.

Table 5: Average Asset Replacement Costs								
	Watermains	Sewers						
Total System Replacement Cost	\$155M	\$136M						
Years for Full Replacement	74	89						
Average Annual Cost for Replacement	\$2.1M/year	\$1.5M/year						

5. Age Based Replacement Program – 20 Year

The Age Based Replacement Program was based on the estimated service life of each asset. The estimated remaining life and subsequent estimated replacement year were calculated for all of the Town of Georgina's water and wastewater assets. The total estimated replacement costs for each time period were calculated and are shown in Table 6. In addition, the table highlights the average annual costs over the first 20 year period. Due to the overall age of the Town's water system, the results show that this program is highly weighted to asset replacement beyond the 20 year period.

Table 6: Aged Based Replacement Program								
Risk Based	Timing	Wastewater ⁽¹⁾						
	20 Year Annual	\$ 646,000	\$	21,000				
	1-5	\$ 3,744,000	\$	371,000				
Age Based	6-10	\$ 50,000	\$	57,000				
Age Bussu	10-20	\$ 9,129,000	\$	-				
	20+	\$ 142,368,000	\$	135,500,000				
	Total	\$ 155,291,000	\$ 1	35,500,000				

(1) Values have been rounded to the nearest thousand

The results of the age based and average asset replacement analysis are summarized in Figure 1 and Figure 2, (*average* replacement needs over the long term are shown as the orange dotted lines) as follows:

- Between 2016 and 2050 there is a generally lower than the average asset replacement value
- Post 2050, the annual replacement needs are estimated to be significantly higher than the average asset replacement value



Figure 1: Age Based Watermain Asset Replacement Schedule and Costs

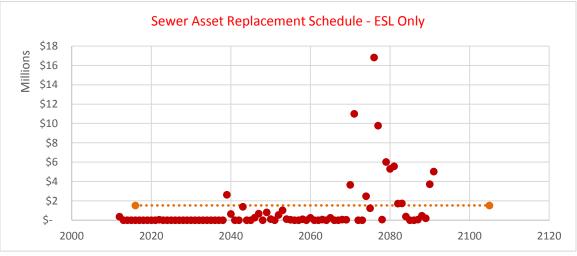


Figure 2: Age Based Sewer Asset Replacement Schedule and Costs

6. Risk Based Replacement Program

The Risk Based Replacement Programs are dependent on the risk scores derived from the LoF and CoF. The severity of the risk scores is highly dependent on the CoF over the LoF.

6.1 Scenarios

Three risk-based scenarios were developed under this analysis targeting high, medium, and low levels of service. Table 7 indicates the actions associated with each risk score for each level of service scenario.

6.1.1 High Level of Service Scenario

A high level of service is the result of a low risk tolerance thus enabling assets to be triggered for replacement at a lower risk score. By having a low risk tolerance, this scenario is more proactive due to a higher rate of replacement.

6.1.2 Low Level of Service Scenario

A low level of service is the result of a high risk tolerance which enables assets to be triggered for replacement at a higher risk score. By having a high risk tolerance, this scenario is the more reactive. The replacement of an asset is only triggered when absolutely necessary resulting in high costs at the back end of the replacement period.

6.1.3 Medium Level of Service Scenario

A medium level of service is the result of a medium risk tolerance and it is the result of a risk score between low and high.

					Low LoS	Medium LoS	High LoS
CoF	LoF	Risk Score	Risk Score	Action	Timing	Timing	Timing
1	1	1, 1	1	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	At Asset Failure (20+)
1	2	1, 2	2	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	At Asset Failure (20+)
1	3	1, 3	3	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	6-10 Years
1	4	1, 4	4	Do nothing-replace	At Asset Failure (20+)	10-20 Years	6-10 Years
1	5	1, 5	5	Rehab/replace	10-20 Years	6-10 Years	1-5 Years
2	1	2, 1	2	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	At Asset Failure (20+)
2	2	2, 2	4	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	At Asset Failure (20+)
2	3	2, 3	6	Do nothing-replace	At Asset Failure (20+)	10-20 Years	10-20 Years
2	4	2, 4	8	Rehab/replace	10-20 Years	10-20 Years	10-20 Years
2	5	2, 5	10	Rehab/replace	6-10 Years	6-10 Years	1-5 Years
3	1	3, 1	3	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	At Asset Failure (20+)
3	2	3, 2	6	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	At Asset Failure (20+)
3	3	3, 3	9	Do nothing-replace	At Asset Failure (20+)	10-20 Years	10-20 Years
3	4	3, 4	12	Rehab/replace	6-10 Years	6-10 Years	6-10 Years
3	5	3, 5	15	Rehab/replace	6-10 Years	6-10 Years	1-5 Years
4	1	4, 1	4	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	At Asset Failure (20+)
4	2	4, 2	8	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	10-20 Years
4	3	4, 3	12	Rehab/replace or reduce criticality score by adding redundancy	10-20 Years	6-10 Years	6-10 Years
4	4	4, 4	16	Rehab/replace or reduce criticality score by adding redundancy	6-10 Years	1-5 Years	1-5 Years
4	5	4, 5	20	Rehab/replace or reduce criticality score by adding redundancy	1-5 Years	1-5 Years	1-5 Years
5	1	5, 1	5	Do nothing-replace	At Asset Failure (20+)	At Asset Failure (20+)	At Asset Failure (20+)
5	2	5, 2	10	Rehab/replace or reduce criticality score by adding redundancy	At Asset Failure (20+)	10-20 Years	10-20 Years
5	3	5, 3	15	Rehab/replace or reduce criticality score by adding redundancy	10-20 Years	6-10 Years	1-5 Years
5	4	5, 4	20	Rehab/replace or reduce criticality score by adding redundancy	6-10 Years	1-5 Years	1-5 Years
5	5	5, 5	25	Rehab/replace and/or reduce criticality score by adding redundancy	1-5 Years	1-5 Years	1-5 Years

Table 7: Risk and Action Summary

6.2 Watermain Risk Based Program

Table 8 summarizes the Town's current water distribution system. Overall, the Town's watermains are relatively new and are expected to have large costs associated with replacement near the end of the system's life cycle.

Total System Length	205,732 m
Average Asset Age	21 years
Total System Replacement Cost	\$155M
Period for the Replacement of Every Asset	74 Years
Average Cost per Year	\$2.1M/year
System Currently Exceeding Useful Life	1%

Table	8.	Water	Distribution	Program	Overview
Iable	Ο.	vvalei	DISTINUTION	riogiani	Overview

Likelihood of Failure Criteria and Weighting 6.2.1

LoF was based on the combined scoring and weighting of break history, remaining life, and material of each watermain. Table 9 outlines the high scoring criteria (i.e. results within these categories that produce ratings of 4 or 5), the results of the pairwise analysis, and each criteria's respective weighting.

Table 9: Likelihood of Failure Pairwise An	alysis
--	--------

	High Scoring	Comment	Pairwise Weighting
Breaks	Historically broken watermains	Based on historic data	35%
Remaining Life	Older watermains	Low estimated useful life remaining	41%
Material	Cast iron and copper pipes	Higher failure rated materials	24%

6.2.2 Consequence of Failure Criteria and Weighting

CoF was based on Hydraulic LOS and Property and Environmental impacts. Hydraulic LOS is dependent on the number and type of customers effected by a failing watermain. LOS was divided into total loss of service, service less than 20 PSI, and service less than 40 PSI which the highest scoring for total loss of service and ICI customers over Residential customers.

Property and Environmental impacts were based on flow rate, max day pressure, road class, and proximity to environmental feature. Table 10 outlines the high scoring criteria, the results of the pairwise analysis, and each criteria's respective weighting. The flow rate and road class have a very strong influence on the final Property and Environmental impact score.

	High Scoring	Impact	Pairwise Weighting
Flow	High flow rates	Property/environment damage	35%
Max Day Pressure	High pressures	Property/environment damage	11%
Road Class	High traffic roads	Traffic disruption	35%
Proximity to an Environmental Feature	Assets crossing environmental features	Environment damage	19%

11 10 14/ 1 . . 1011 1147 2 1 1

An additional pairwise analysis weights Hydraulic LOS against Property and Environmental impacts. Table 11 outlines the pairwise analysis between the two criteria.

7	Fable 11: Watermain Consequence of	Failure Pairwise Weighting	J
		Pairwise Weighting	
	Hydraulic Loss of Service	67%	
	Property and Environmental	33%	

6.2.3 Replacement Program

The costs associated with each Risk Replacement Program for watermains is outlined in the below Table 12. The water distribution system is relatively new, with minimal historic breaks and minimal break impacts to customers due to looping. Overall, the water system produces low risk scores and has higher costs associated with the back end of the 20 year program and 20+ year program

Table 12: Watermain Replacement Program Costs							
Risk Based	Timing	Water ⁽¹⁾					
	20 Year Annual	\$ 78,000/yr					
	1-5 Total	\$-					
Low LOS -	6-10 Total	\$ 394,000					
High Risk Tolerance	10-20 Total	\$ 1,168,000					
	20+ Total	\$ 153,729,000					
	Total	\$ 155,291,000					
Medium LOS - Med Risk	20 Year Annual	\$ 595,000/yr					
	1-5 Total	\$ 48,000					
	6-10 Total	\$ 1,034,000					
	10-20 Total	\$ 10,813,000					
Tolerance	20+ Total	\$ 143,396,000					
	Total	\$ 155,291,000					
	20 Year Annual	\$ 1,038,000/yr					
	1-5 Total	\$ 275,000					
High LOS -	6-10 Total	\$ 10,517,000					
Low Risk Tolerance	10-20 Total	\$ 9,971,000					
	20+ Total	\$ 134,529,000					
	Total	\$ 155,291,000					

(1) Values have been rounded to the nearest thousand

6.3 Wastewater Risk Based Program

Table 13 summarizes the Town's current wastewater system. Overall the Town's sewers are relatively new and are expected to have large costs associated with replacement near the end of the system's life cycle.

Table 13: Sanitary Sewer Program Over	view
Total System Length	174,570 m
Average Asset Age	22 years
Total System Replacement Cost	\$136M
Period for the Replacement of Every Asset	89 years
Average Cost per Year	\$1.5M/year
System Currently Exceeding Useful Life	<1%

6.3.1 Likelihood of Failure Criteria and Weighting

LOF was based on the combined scoring and weighting of remaining life of a sewer. The estimated remaining useful life results in a higher likelihood of failure.

6.3.2 Consequence of Failure Criteria and Weighting

CoF was based on Hydraulic LOS and Property and Environmental impacts. Hydraulic LOS is dependent on gravity sewer diameter.

Property and Environmental impacts were based on peak wet weather flow, whether a sewer is downstream a sewage pumping station, road class, and proximity to environmental features. Table 10 outlines the high scoring criteria and the results of the pairwise analysis and each criteria's respective weighting.

	High Scoring	Impact	Pairwise Weighting
Flow Rate	Large flow rate due to large catchment area	Environmental and property damage	34%
Downstream SPS	Downstream a SPS	Environmental and property damage	37%
Road Class	High traffic roads	Traffic disruption	17%
Proximity to an Environmental Feature	Assets crossing environmental features	Environment damage	11%

Table 14: Watermain Property and Environment Impact Criteria and Weighting

An additional pairwise analysis weights Hydraulic LOS against Property and Environmental impacts. Table 11 evaluates the pairwise analysis between the two criteria.

Table 15: Sewer Consequence of F	ailure Pairwise Weighting			
Pairwise Weighting				
Hydraulic Loss of Service	60%			
Property and Environmental	40%			

6.3.3 Replacement Program

The costs associated with each Risk Replacement Program for sewers is outlined in the below Table 16. The wastewater system is relatively young, with minimal impacts to customers due to lower peak wet weather flow rates. Overall, the wastewater system produces low risk scores and has higher costs associated with the back end of the 20 year program.

Table 16: \	Nastewater Replac	ement F	Program Costs
Risk Based	Timing	W	/astewater ⁽¹⁾
	20 Year Annual	\$	240,000/yr
	1-5 Total	\$	146,000
Low LOS -	6-10 Total	\$	456,000
High Risk Tolerance	10-20 Total	\$	4,193,000
	20+ Total	\$	131,131,000
	Total	\$	135,928,000
	20 Year Annual	\$	443,000/yr
Medium	1-5 Total	\$	146,000
LOS - Med	6-10 Total	\$	456,000
Risk	10-20 Total	\$	8,250,000
Tolerance	20+ Total	\$	127,075,000
	Total	\$	135,928,000
	20 Year Annual	\$	831,000/yr
	1-5 Total	\$	428,000
High LOS - Low Risk	6-10 Total	\$	1,667,000
Tolerance	10-20 Total	\$	14,530,000
	20+ Total	\$	119,303,000
	Total	\$	135,928,000

(1) Values have been rounded to the nearest thousand

7. Scenario Summaries

Table 17, Figure 3, and Figure 4 summarize the replacement program timings and costs for scenarios based on level of service and aging infrastructure.

	: Asset Replacement Pr	-		
Risk BasedTiming20 Year Annu1-520 Year Annu1-520 Year Annu10-2020 Year Annu20 Year Annu20 Year Annu1-5Medium LOS - Med Risk Tolerance6-1010-2020+20 Year Annu1-520 Year Annu1-2020 Year Annu1-510-2020+20 Year Annu1-5	Timing	Water ⁽¹⁾	V	Vastewater ⁽¹⁾
	20 Year Annual	\$ 78,000	\$	240,000
	1-5	\$-	\$	146,000
Low LOS - High Risk	6-10	\$ 394,000	\$	456,000
Tolerance	10-20	\$ 1,168,000	\$	4,193,000
	20+	\$ 153,729,000	\$	131,131,000
	Total	\$ 155,291,000	\$	135,928,000
	20 Year Annual	\$ 595,000	\$	443,000
	1-5	\$ 48,000	\$	146,000
Medium LOS - Med	6-10	\$ 1,034,000	\$	456,000
Risk Tolerance	10-20	\$ 10,813,000	\$	8,250,000
	20+	\$ 143,396,000	\$	127,075,000
	Total	\$ 155,291,000	\$	135,928,000
	20 Year Annual	\$ 1,038,000	\$	831,000
	1-5	\$ 275,000	\$	428,000
High LOS - Low Risk	6-10	\$ 10,517,000	\$	1,667,000
Tolerance	10-20	\$ 9,971,000	\$	14,530,000
	20+	\$ 134,529,000	\$	119,303,000
	Total	\$ 155,291,000	\$	135,928,000
	20 Year Annual	\$ 646,000	\$	21,000
	1-5	\$ 3,744,000	\$	371,000
Ago Basod	6-10	\$ 50,000	\$	57,000
Aye baseu	10-20	\$ 9,129,000	\$	-
20 Year Annual \$ 646,000 \$ 1-5 \$ 3,744,000 \$ 6-10 \$ 50,000 \$ 10-20 \$ 9,129,000 \$ 20+ \$ 142,368,000 \$	135,500,000			
	Total	\$ 155,291,000	\$	135,500,000
Years for Full Replacement		74		89
Average Annual Co	st for Replacement	\$ 2,099,000	\$	1,527,278

Table 17: Asset	t Replacement Program	n – Water and Wastewater
10010 11.1100001	i topidoonione i rogian	

(1) Values have been rounded to the nearest thousand

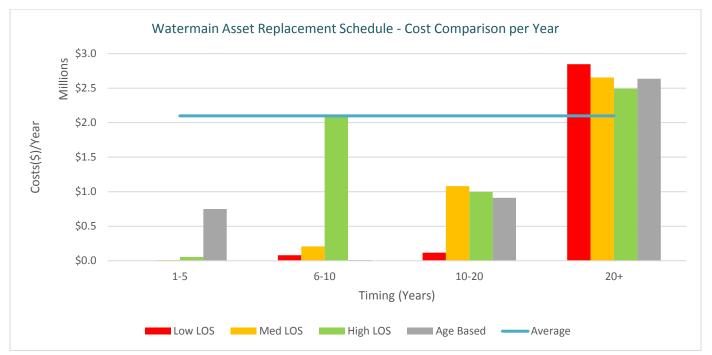


Figure 3: Watermain Asset Replacement Schedule – Cost Comparison

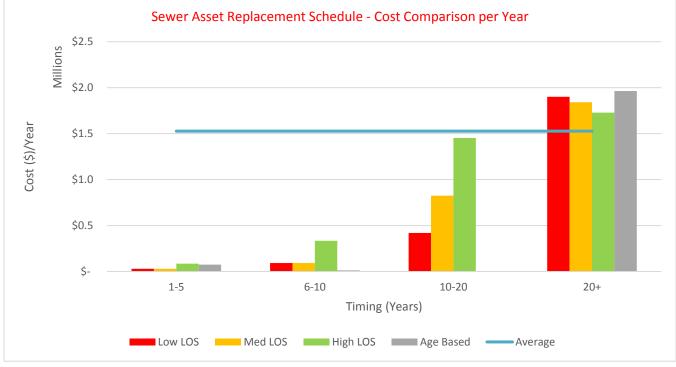


Figure 4: Sewer Asset Replacement Schedules - Cost Comparison

8. Summary

- 1. The Town of Georgina Water and Wastewater Criticality Analysis can be summarized as follows:
 - The dynamic Excel-based tool was developed to assist in:
 - Assessment of relative individual pipe (water and wastewater) criticality
 - Development of a risk-based prioritized capital replacement plan
 - Prioritized replacement of watermains, sewers, and roads to minimize disruptions and optimize costs
 - Higher costs are a result of lower risk tolerances
 - The Town's system is very new and total replacement is heavily weighted for the 20+ year schedule
- 2. In order to develop CoF and LoF, the criticality assessment tool applied the following inputs:
 - Watermains:
 - Age, historic breaks, material
 - Loss of service, flow rate, max day pressure, road class, proximity to an environmental feature
 - Sewers:
 - Age
 - Diameter, peak wet weather flow rate, location of sewage pumping station, road class, proximity to an environmental feature

Several replacement program scenarios with varying levels of service, risk tolerance and annual costs for the subsequent 20 years were developed. The total replacement costs of each were calculated using unit costs by pipe diameter. The scenarios are summarized as follows:

- Low level of service with high risk tolerance produced low annual costs
- Medium level of service with medium risk tolerance produced medium annual costs
- High level of service with low risk tolerance produced high annual costs
- Aging infrastructure based scenario produced medium annual costs

Table 18 summarizes the annual costs associated with the above scenarios.

Risk Based	Timing	Water ⁽¹⁾	Wa	stewater ⁽¹⁾
Low LOS - High Risk Tolerance	20 Year Annual	\$ 78,000	\$	240,000
Medium LOS - Med Risk Tolerance	20 Year Annual	\$ 595,000	\$	443,000
High LOS - Low Risk Tolerance	20 Year Annual	\$ 1,038,000	\$	831,000
Age Based	20 Year Annual	\$ 646,000	\$	21,000
Years for Full	74		89	
Average Annual Co	st for Replacement	\$ 2,099,000	\$	1,527,278

Table 18: Annual Asset Replacement Program Costs

(1) Values have been rounded to the nearest thousand

8.1 Recommendations

- Town of Georgina use the criticality tool to develop a refined capital replacement plan that prioritizes the higher risk assets within the water and wastewater network
- · Feed the results of the replacement scenarios into the ongoing water and wastewater rate study
- Town of Georgina continually update the watermain and sewer data within the tool as necessary and further refine the risk scoring and weighting to reflect any newly available information and/or Town priorities (e.g. Sewer PACP scores, watermain break information, sewer model results, water & sewer replacement information, etc)

APPENDIX A: Criticality Analysis Tool Instructions

Instructions

Table of Contents 1. Introduction 2. Dynamics of Weightings Tabs 2.1 Watermain Weightings 2.1.1 Analysis Year 2.1.2 Likelihood of Failure 2.1.3 Consequence of Failure 2.1.3.1 Hydraulic Level of Service Impacts 2.1.3.2 Property and Environmental Impacts 2.1.3.3 Consequence of Failure Weighting 2.1.4 Cost Estimating 2.2 Wastewater Weightings 2.1.1 Analysis Year 2.1.2 Likelihood of Failure 2.1.3 Consequence of Failure 2.1.3.1 Hydraulic Level of Service Impacts 2.1.3.2 Property and Environmental Impacts 2.1.3.3 Consequence of Failure Weighting 2.1.4 Cost Estimating 3. Assessment Tables 3.1 Likelihood of Failure 3.2 Consequence of Failure 3.2.1 Hydraulic Loss of Service 3.2.2 Property and Environmental Impact 3.2.3 Consequence of Failure Score 3.3 Replacement Program 3.3.1 Basis for Timing and Costs 3.3.2 Age Based Replacement Program 3.3.3 Total Risk Score 3.3.4 Risk Based Replacement Programs 4. Risk and Action Summary

1. Introduction

Tab Name	System	Overview	Action Taken	Comments
Instructions	NA	Instructions for using the tool	Static	
		Definition for likelihood of failure and		
Definitions	NA	consequence of failure categories for Water and	Static	
		Wastewater System		
Summany	Water and	Summary table of the replacement program	Static	
<u>Summary</u>	Wastewater	costs and timing	Static	
		Weighting and scoring factors that control total		
Weighting W	Water	risk, likelihood of failure, and consequence of	Dynamic	
		failure scores		
Watermain		List of all watermains within Georgina and their		
ASSESSMENT	Water	respective characteristics, weightings, scores,	Static	
ASSESSIVIENT		and low to high replacement programs		
Assessment		Distribution tables and graphs for major criteria,		
Distribution	Water	likelihood of failure, and consequence of failure	Static	
Distribution		assessed		
		Description of timings and actions associated		No sheet modifications needed when adjusting weighting factors
Water Risk &	Water	with respective risk scores derived from	Static	Sheet modifications required to accommodate inclusion of additional analysis
Action Summary		likelihood of failure and consequence of failure	otatio	components and/or adjustment of timing envelopes.
		Weighting and scoring factors that control total		
Weighting WW	Wastewater	risk, likelihood of failure, and consequence of	Dynamic	
		failure scores		
		List of all gravity sewers within Georgina and		
WW ASSESSMENT	Wastewater	their respective characteristics, weightings,	Static	
		scores, and low to high replacement programs		
		Description of timings and actions associated		No sheet modifications needed when adjusting weighting factors
WW Risk & Action	Wastewater	with respective risk scores derived from	Static	Sheet modifications required to accommodate inclusion of additional analysis
<u>Summary</u>		likelihood of failure and consequence of failure		components and/or adjustment of timing envelopes.
		,		
Data Tabs	Water and	Raw data used to populate the tool's database	Static	Replace existing data within tabs as new/revised information becomes available
	Wastewater	(multiple tabs)		

2. Dynamics of Weighting Tabs

2.1 Watermain Weighting

Dynamic features are in red text

2.1.1 Analysis Year

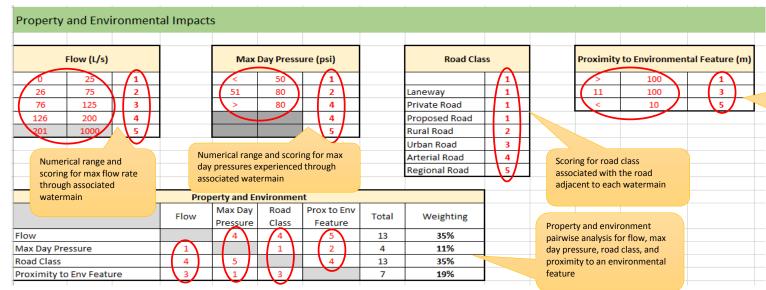
ANALYSIS YEAR Current year or year analysis is being performed 2016

2.1.2 Likelihood of Failure

IKELIHOOD O	FFAIL	URE											
						Scorin	ng for w	atermain ma	terials				
							<u> </u>						
Breaks	\sim				Materi	al					Remainin	g Lite	
		-	PVC	Polvinyl C	hloride			2		>	60		
1 1	4		CI	Cast Iron				5		59	41	2	
> 1	5		COP	Copper				5		40	21	3	
			CPP	Concrete	Pressure Pipe	2		2		20	10	4	
			DI	Ductile Ir	on			3		<	10	5	
			PE	Polyethyl	ene			2					
Numerical range and			UNK	Unkown				5					
scoring for historic			STL	Steel				5					
watermain breaks			AC	Asbestos	Cement			2					
watermain breaks			HDPE	High Den	sity Polyethyl	ene		2					
			PV	Ū				5				Numerical range and sco remaining life of each	oring
												watermain based on wa	torn
												material	tem
	Like	lihood of Fa	ilure									Indecriai	
	Breaks	Remaining Life	Material	Total	Weighting		water	nood of failur main breaks,	•	•			
Breaks	~	2	4	6	35%		mater	rial					
Remaining Life	3		4	7	41%								
Material	2	2		4	24%								

	Estimated Useful Life	~							
PVC	Polyvinyl Chloride	75							
CI	Cast Iron 50								
COP	Copper	50							
CPP	Concrete Pressure Pipe	75							
DI	Ductile Iron	50							
PE	Polyethylene	75							
UNK	Unknown	50							
STL	Steel	60							
AC	Asbestos Cement	75							
HDPE	High Density Polyethylene	75							
PV	Poly Vinyl	75							

Estimated useful life of each watermain based on material

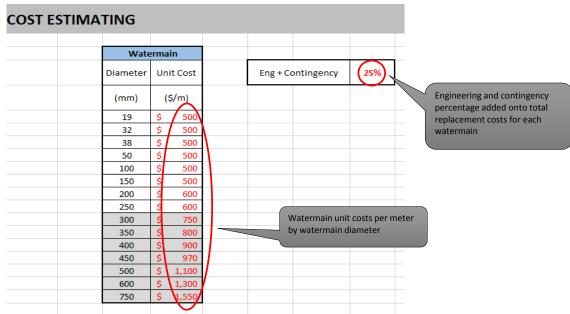

2.1.3 Consequence of Failure

2.1.3.1 Hydraulic Level of Service Impacts

Hydraulic Lev	el of Service Impacts							
						Hydraulic Loss of Service	mpacts	
Loss of S	Service	Land Use Facto	or	5	Extreme	Impact Score > 500	2	500
otal Loss	2	Res		4	Major	Impact Score 301-500	201	500
20 psi	1	ICI	5	3	Moderate	Impact Score 101-300	51	200
40 psi	0.5	Special	5	2	Minor	Impact Score 26-100	2	50
				1	Minimal	Impact Score < 1	≤	1
Scoring for loss	of service to	Scoring for land use				merical range for the number of stomers that are impacted by a		

customers based on hydraulic model analysis Scoring for land use associated with proximity to each watermain Numerical range for the number of customers that are impacted by a hydraulic loss of service determined by billing data and the hydraulic model

2.1.3.2 Property and Environmental Impacts



Numerical range and scoring for a watermain within proximity to an environmental feature (e.g. Lake Simcoe, lakes, rivers, streams, ponds, etc.)

2.1.3.3 Consequence of Failure Weighting

eighting							
omer) Impac	t vs Proper	ty and Env	vironmental (Rd/Env) Im	pact		
Hyd LOS	P & E			Total	Weighting		Consequence of failure pairw
	4			4	67%		analysis hydraulic loss of serv and property and
(2)				2	33%		environmental
		omer) Impact vs Proper Hyd LOS P & E	omer) Impact vs Property and Env Hyd LOS P & E	omer) Impact vs Property and Environmental (Hyd LOS P & E	omer) Impact vs Property and Environmental (Rd/Env) Im Hyd LOS P & E Total	omer) Impact vs Property and Environmental (Rd/Env) Impact Hyd LOS P & E Total Weighting 4 4 67%	omer) Impact vs Property and Environmental (Rd/Env) Impact Hyd LOS P & E Total Weighting 4 4 67%

2.1.4 Cost Estimating

2.2 Wastewater Weighting

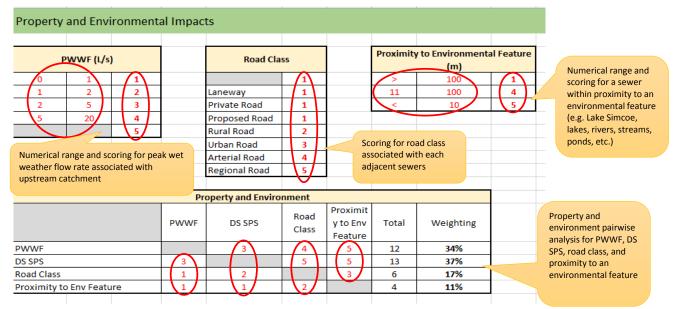
2.2.1 Analysis Year

Current year or year analysis is being performed

2.2.2 Likelihood of Failure

LIKELIHOOD OF FAILURE				
Remaining Life		PACP Score		
	1	Acceptable		 Scoring for PACP **NOTE** There is currently no
69 50 2	2	Minimal Risk	2	data available but this can be in
49 30 3	3	Collapse Unlikely in Near Future	3	in the analysis when data becom
29 10 4	4	Collapse Likely in Near Future	4	available
× 9 5	5	Collapse Imminent	5	

no PACP included omes


Numerical range and scoring for the remaining life of a sewer

2.2.3 Consequence of Failure

2.2.3.1 Hydraulic Level of Service Impacts

lydraulic Level of Service Impacts		Scoring for sewers
Gravity Diameter (mm) 0 250 1 250 375 2 375 450 3 450 525 4 > 525 5	DS SPS No 1 Yes 5	downstream of pumping stations

2.2.3.2 Property and Environmental Impacts

2.2.3.3 Consequence of Failure Weighting

Consequence of Failure W	eighting						
Hydraulic LOS (Cus	tomer) Imp	act vs Property an	d Environ	mental (Rd	l/Env) Impa	act	
	Hyd LOS	P & E			Total	Weighting	Consequence of failure pairwise analysis
Hydraulic LOS		(3)			3	60%	hydraulic loss of service and property and environmental
Property and Environmental	(2)				2	40%	

2.2.4 Cost Estimating

Sewer Eng + Contingency 25% Engineering and contingency percentage added onto total replacement costs for each sewer 100 \$ 500	COST ESTIMA	TING		
Diameter Unit Cost Eng + Contingency 25% Engineering and contingency percentage added onto total replacement costs for each sewer 100 \$ 500		Sev	ver	
(mm) (\$/pi) 100 \$ 500 150 \$ 500 200 \$ 600 200 \$ 600 200 \$ 600 300 \$ 618 375 \$ 659 450 \$ 715 Sewer unit costs per meter by sewer diameter 525 \$ 769 600 \$ 990 675 \$ 1,200 750 \$ 1,331 825 \$ 1,428				Eng + Contingency (25%) Engineering and contingency percentage
100 \$ 500 150 \$ 500 200 \$ 600 250 \$ 600 300 \$ 618 375 \$ 659 450 \$ 715 525 \$ 769 600 \$ 990 675 \$ 1,200 750 \$ 1,331 825 \$ 1,428				
200 \$ 600 250 \$ 600 250 \$ 600 300 \$ 618 375 \$ 659 450 \$ 715 525 \$ 769 600 \$ 990 675 \$ 1,200 750 \$ 1,331 825 \$ 1,428		100		sewer
250 \$ 600 300 \$ 618 375 \$ 659 450 \$ 715 525 \$ 769 600 \$ 990 675 \$ 1,200 750 \$ 1,331 825 \$ 1,428		150	\$ 500	
300 \$ 618 375 \$ 659 450 \$ 715 525 \$ 769 600 \$ 990 675 \$ 1,200 750 \$ 1,331 825 \$ 1,428		200	600	
375 \$ 659 450 \$ 715 525 \$ 769 600 \$ 990 675 \$ 1,200 750 \$ 1,331 825 \$ 1,428		250	\$ 600	
450 \$ 715 Sewer unit costs per meter by sewer diameter 525 \$ 769 600 \$ 990 675 \$ 1,200 750 \$ 1,331 825 \$ 1,428		300	\$ 618	
525 \$ 769 600 \$ 990 675 \$ 1,200 750 \$ 1,331 825 \$ 1,428		375	\$ 659	
600 \$ 990 675 \$ 1,200 750 \$ 1,331 825 \$ 1,428		450	\$ 715	Sewer unit costs per meter by sewer diameter
675 \$ 1,200 750 \$ 1,331 825 \$ 1,428		525	\$ 769	
750 \$ 1,331 825 \$ 1,428		600	\$ 990	
825 \$ 1,428		675	\$ 1,200	
		750		
900 \$1,680				
		900	\$ 1,680	

3. Assessment Tables

3.1 Likelihood of Failure

		-										
					Likelihoo	d of Failur	e					
												Scoring for likelihood of failure is the weighted su
Age 🗸	Expected Life	Remaining Life	Age Score	₩eighted AGE SCOR ↓	Number of Breaks	BREAK SCORF	₩eighted Break Score	Material	MATERIA L SCORF	Weighted Material Score	TOTAL LOF	of age, break history, and material
29	75	46	2	0.8	0	1	0.4	PVC	2	0.5	2	
29	75	46	2	0.8	0	1	0.4	PVC	2	0.5	2	
29	75	46	2	0.8	0	1	0.4	PVC	2	0.5	2	
29	75	46	2	0.8	0	1	0.4	PVC	2	0.5	2	
20	70	40		0.0			0.4	DUC		0.0	-	

3.2 Consequence of Failure

3.2.1 Hydraulic Loss of Service

	BES				Hydrau	lic LOS ICI			
Total of Se	< 20 ps	si T	20-40 p	osi 💌	Total Loss of Service	< 20 psi	20-40 psi	Hydraulic LOS Impac _y	Hydraulic
45	0		0		0	0	0	902	5
45			0		0	0		902 902	5
33	 0	-		0	0	0	665	5	

Scoring for hydraulic loss of service is determined by loss of service impacts, land use and pressure received by a customer

3.2.2 Property and Environment Impact

		Со	nseq	uence of I	ailure								
						Proper	ty and Environme	ntal Impact					
MDD Flow (L/s)	Flow Score	₩eig Flo Sco			MDP Score	Weighted MDP Score	Road Class	Road Class Score		Proximity to Env Feature	Env Feature Score	Weighted Env Feature Score	Total Property & Env Impact Score
2.3	1.0	0.	4	75.5	2.0	0.2	Arterial Road	4	1.4	13	3	0.6	2.5
2.2	1.0	0.	4	75.4	2.0	0.2	Arterial Road	4	1.4	39	3	0.6	2.5
2.3	1.0	0.	4	75.2	2.0	0.2	Arterial Road	4	1.4	13	3	0.6	2.5
1.7	1.0	0.	4	74.6	2.0	0.2	Arterial Road	4	1.4	40	3	0.6	2.5
1.7	1.0	0.	4	74.7	2.0	0.2	Arterial Road	4	1.4	39	3	0.6	2.5
		~		34.0	~~	~ ~	1			1 00	I	~~	~-

Scoring for total property and environmental impact is the weighted sum of flow rate, pressure, road class, and proximity to an environmental feature

3.2.3 Consequence of Failure Score

																					9 · · · · · · · · · · · · · · · · · · ·
							1			Consec	quence of	Failure									
			Hydrau	lic LOS									Property	and Environme	ntal Impact						
	RES			ICI			+													↓	
Total Loss of Service	< 20 psi	20-40 psi	Total Loss of Service	< 20 psi	20-40 psi	Hydraulic LOS Impac _y	Total Hydraulic LOS Score	MDD Flow (L/s)	Flow Score	Weighted Flow Score		MDP Score	Weighted MDP Scor(Road Class	Road Class Score		Proximity to Env Feature		Weighted Env Feature Score	Total Property & Env Impact Score	TOTAL COF
451	0	0	0	0	0	902	5	2.3	1.0	0.4	75.5	2.0	0.2	Arterial Road	4	1.4	13	3	0.6	2.5	4
451	0	0	0	0	0	902	5	2.2	1.0	0.4	75.4	2.0	0.2	Arterial Road	4	1.4	39	3	0.6	2.5	4
451	0	0	0	0	0	902	5	2.3	1.0	0.4	75.2	2.0	0.2	Arterial Road	4	1.4	13	3	0.6	2.5	4
332	0	0	0	0	0	665	5	1.7	1.0	0.4	74.6	2.0	0.2	Arterial Road	4	1.4	40	3	0.6	2.5	4

Scoring for consequence of failure is the weighted sum of total hydraulic loss of service score and total property and environmental impacts score

3.3 Replacement Program

3.3.1 Basis for Timing and Costs

Unit Cost (\$/m)	Total Replacement Cost(\$) ݷ	ESL – Replacement Date –
\$ 600	\$ 46,168	2062
\$ 600	\$ 27,341	2062
\$ 600	\$ 13,715	2062
\$ 600	\$ 37,103	2062

A unit cost, total replacement cost, and replacement date are calculated for each watermain

3.3.2 Age Based Replacement Program

	Years for full F	Total Replac		\$ 197,330,560 74) \$ 178,534,179 \$4,699,095.32		1-20 3,796,381 939,819		042	6-10 \$ 50,345	\$ 9,15	-20 59,689 17,704	<u> </u>	20+ 4,376,484
Avg	Annual Cost for P	Replac	ement	\$ 2,666,62	9									
										AGE BASED				
8 ~+	TOTAL COF	Unit (\$/		Total Replacement Cost (\$)		(A	20 Years ge/ESL Only) 🖕	1-5Yea	ы 4	6-10 Years	10-20	Years		20+
-	4	\$	600	\$ 46,16	3 2062	\$	-	\$	-	\$ -	\$	-	\$	46,168
-	4	\$	600	\$ 27,34		\$	-	\$	-	\$ -	\$	-	\$	27,341
		\$	600	\$ 13,71	5 2062	\$	-	\$	-	\$ -		-		13,715

3.3.3 Total Risk Scores

3.3.4 Risk Based Replacement Programs

	20 Year Annual	1-5 \$ -	6-10 \$ 394,065	10-20 \$ 1,168,437 78,125	20+ \$ 195,768,058	TOTAL \$ 197,330,560					
	Replacement Program										
Action	Timing	1-5Years	6-10 Years	10-20 Years	20+	Action					
	At Asset Failure (20+)	\$ -	\$ -	\$-		Do nothing-replace					
Do nothing-replace	At Asset Failure (20+)	\$ -	\$ -	\$ -	\$ 27.341	Do nothing-replace					

4. Risk and Action Summary

2 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 3 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 5 Rehab/replace 10-20 Years 6-10 Years 6-10 Years 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 6 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 70 Rehab/replace 8-10Years 8-10Years 10-20 Years 10 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 10 Rehab/replace 8-10Years 6-10 Years 10-20 Years 10 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+	IGH Level of Service
2 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) <th>Timing</th>	Timing
3 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) 6-10 4 Do nothing-replace 10-20 Years 6-10 5 Rehab/replace 10-20 Years 6-10 4 Do nothing-replace 10-20 Years 6-10 5 Pendb/replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 6 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 7 Rehab/replace 10-20 Years 10-20 Years 10-20 Years 8 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 9 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 10 Ponothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 10 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 12 Rehab/replace 6-10 Years	Asset Failure (20+)
4 Do nothing-replace At Asset Failure (20+) 10-20 Years 6-10 5 Rehab/replace 10-20 Years 6-10 Years 155 2 Do nothing-replace At Asset Failure (20+)	Asset Failure (20+)
5 Rehab/replace 10-20 Years 6-10 Years 1-51 Years 2 Do nothing-replace At Asset Failure (20+)	10 Years
2 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) <td>10 Years</td>	10 Years
4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 6 Do nothing-replace At Asset Failure (20+) 10-20 Years 10-20 7 Rehab/replace 10-20 Years 10-20 Years 10-20 10 Rehab/replace 6-10 Years 6-10 Years 10-20 Years 10-20 10 Rehab/replace 6-10 Years 6-10 Years 10-20 Years 10-20 Years 10 Rehab/replace 6-10 Years 6-10 Years 10-20 Years 10-20 Years 10 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 12 Rehab/replace 6-10 Years 6-10 Years 6-10 Years 6-10 Years 15 Rehab/replace 6-10 Years 6-10	5Years
6 Do nothing-replace At Asset Failure (20+) 10-20 Years 10-20 8 Rehab/replace 10-20 Years 10-20 Years 10-20 10 Rehab/replace 8-10 Years 10-20 Years 10-20 10 Rehab/replace 8-10 Years 6-10 Years 10-20 Years 10-20 10 Rehab/replace 8-10 Years 6-10 Years 6-10 Years 10-20 Years 10-20 Years 3 Do nothing-replace At Asset Failure (20+)	Asset Failure (20+)
8 Rehab/replace 10-20 Years 10-20 Years 10-20 Years 10 Rehab/replace 6-10 Years 6-10 Years 15 3 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 12 Rehab/replace 6-10 Years 6-10 Years 10-20 Years 15 Rehab/replace 6-10 Years 6-10 Years 6-10 Years 15 Rehab/replace 6-10 Years 6-10 Years 6-10 Years 15 Rehab/replace 6-10 Years 6-10 Years 6-10 Years 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 16 Rehab/replace or reduce criticality score by adding redundancy 10-20 Years 1-5 Years 1-5 Years 20 Rehab/replace or reduce criticality score by adding redundancy 1-5 Years 1-5 Years 1-5 Years 5 Do nothing-replace At	Asset Failure (20+)
10 Rehab/replace 6-10 Years 6-10 Years 1-5 Years 3 Do nothing-replace Ar Asset Failure (20+) Ar Asset Failur	-20 Years
3 Do nothing-replace At Asset Failure (20+) At Asset	-20 Years
6 Do nothing-replace At Asset Failure (20+) At Asset	5Years
9 Do nothing-replace At Asset Failure (20+) 10-20 Years 10-2 12 Rehab/replace 6-10 Years	Asset Failure (20+)
12 Rehab/replace 6-10 Years 6-10 Years 6-10 15 Rehab/replace 6-10 Years 6-10 Years 6-10 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 8 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) At Asset Failure (20+) 12 Rehab/replace or reduce criticality score by adding redundancy 10-20 Years 6-10 Years 6-10 16 Rehab/replace or reduce criticality score by adding redundancy 10-20 Years 1-5 Years 10-20 Years 10-5 Years 1-5 Years 1-5 Years 1-5 Years 1-5 Years 1-5 Years 1-5 Years 10-20 Years 10-20 Years 10-20 Years	Asset Failure (20+)
15 Rehab/replace 6-10 Years 6-10 Years 15% 4 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+	-20 Years
4 Do nothing-replace At Asset Failure (20+) Interval 12 Rehab/replace or reduce criticality score by adding redundancy 10-20 Years 6-10 Years 6-10 Years 6-10 Years 1-5 Years <td>10 Years</td>	10 Years
8 Do nothing-replace At Asset Failure (20+) At Asset Failure (20+) 10-20 12 Rehab/replace or reduce criticality score by adding redundancy 10-20 Years 6-10 Years 6-10 16 Rehab/replace or reduce criticality score by adding redundancy 6-10 Years 6-10 Years 6-10 16 Rehab/replace or reduce criticality score by adding redundancy 6-10 Years 1-5 Years 1-5 Years 20 Rehab/replace or reduce criticality score by adding redundancy 1-5 Years 10-2 Years 10-2 Years 10-2 Years 10-2 Years 10-2 Years 10-5 Years 1-5 Years<	5Years
12 Rehab/replace or reduce criticality score by adding redundancy 10-20 Years 6-10 Years 6-10 16 Rehab/replace or reduce criticality score by adding redundancy 10-20 Years 1-5 Years 10-2 Years 10-3 Years 10-3 Years 15 Years 15 Years 15	Asset Failure (20+)
16 Rehabiteplace or reduce criticality score by adding redundancy 6-10 Years 1-5 Years 1-5 Years 20 Rehabiteplace or reduce criticality score by adding redundancy 1-5 Years 10-2 Years 10-2 Years 10-2 Years 10-2 Years 1-5 Years	-20 Years
20 Rehab/replace or reduce criticality score by adding redundancy 1-SYears 1-SYears 1-SY 5 Do nothing-replace Ar Asset Failure (20+) At Asset Failur	10 Years
5 Do nothing-replace At Asset Failure (20+) At Asset	5Years
10 Rehabitreplace or reduce criticality score by adding redundancy At Asset Failure (20+) 10-20 Years 10-2 15 Rehabitreplace or reduce criticality score by adding redundancy 10-20 Years 6-10 Years 1-5 20 Rehabitreplace or reduce criticality score by adding redundancy 6-10 Years 1-5 Years 1-5	5Years
15 Rehab/replace or reduce criticality score by adding redundancy 10-20 Years 6-10 Years 1-5 Years 20 Rehab/replace or reduce criticality score by adding redundancy 6-10 Years 1-5 Years 1-5 Years	Asset Failure (20+)
20 Rehab/replace or reduce criticality score by adding redundancy 6-10 Years 1-5 Years 1-5 Years	-20 Years
	5Years
25 Rehab/replace and/or reduce criticality score by adding redundancy 1-5 Years 1-5 Years 1-5 Years 1-5 Years	5Years
	5Years

Defined timing schedules for each risk score based on the timing options below

		Timing Options			
		At Asset Failure (20+) Tin			
Defined watermain action for each risk		10-20 Years		used in above table	
		6-10 Years		used in above table	
score)	1-5Years			
			1		

]				Prob	ability of F	ailure		Г
1			1	2	3	4	5	
	90	1	1	2	3	4	5	E
	ailur	2	2	4	6	8	10	
	eq.	3	3	6	9	12	15	Ē.,
	ons e of	4	4	8	12	16	20	Ē.,
	õ °	5	5	10	15	20	25	

Defined risk score based on consequence of failure and likelihood of failure results